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Summary

This essay attempts to bridge a gap between abstract models of AGI time‐
lines and inside views from the semiconductor industry.

Models like those in Cotra 2020 (“Bio Anchors”), Davidson 2021a (“Ex‐
plosive Growth”), and Davidson 2023 (“Compute‐Centric Framework”) are
grounded in computational and economic abstractions. This is entirely ap‐
propriate formedium‐to‐long‐range forecasting, where extrapolating from
trends at large is generallymore reliable than reasoning about processes in
detail.

Even so, I think their cursory accounts of some of their most important
parameters are major weaknesses. A complementary approach works out‐
ward from an inside view—not by immediately pursuing better parameter
estimates, but by first trying to uncover as many relevant considerations as
possible. To the extent these considerationsmake contact with ourmodels’
abstractions, we can use them for model inputs; anywhere they don’t, we
can rethink our models.

The body of this essay is a short scenario‐planning exercise meant to
demonstrate this approach, considering two pathways by which AI might
fail to have transformative impact in the coming decades. The scenarios
are chosen to invite considerations from the semiconductor industry—both
its history as a point of comparison and its future as part of the cycle of AI
progress. The industry is as mature as any (perhaps second to parts of the
chemical industry), notably in terms of production scale and optimization
up against physical limits. It’s grown faster than the global economy for
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decades, feeding improved hardware back into itself but without explosive
(superexponential) growth. AI aspires to the same scale but is compara‐
tively immature. It leans more heavily on software, which has very differ‐
ent margins and gets less durable competitive advantage from intellectual
property. It may also enter a similar feedback cycle, although there’s a sig‐
nificant potential difference in how effectively AI outputs can substitute for
labor.1 1 That’s the difference at the core of how

advanced AI could drive explosive growth
in Davidson 2021a and Davidson 2023.

I use two scenarios to capture different kinds of obstacles and bottle‐
necks to AI progress. In the first, firms struggle to capture returns on in‐
vestment in AI R&D. In the second, AI progress fails to substantially accel‐
erate the non‐AI inputs to AI R&D. In both scenarios, highly capable AImay
be achieved, but it does not arrive suddenly or have transformative impact
on short timescales.

This exercise, rather than try to estimate parameters for economicmod‐
eling from abstract considerations like the above, attempts to distill the two
scenarios into lower‐level causal drivers. I also try to identify observable
indicators for the degree of influence those drivers may have. Because a
comprehensive evaluation of data on these indicators would vastly expand
the scope of the essay, I mainly call out examples to clarify meaning or rel‐
evance, not to argue the weight of evidence in one direction or another.
Appendix A describes the process used to develop scenarios and other ele‐
ments of the analysis in more detail.

Other appendices provide context and support for some claims that are
non‐obvious but incidental to the scenario analysis. Appendix B briefly
discusses the pipeline from research to deployment in semiconductor de‐
vice production. Appendix C is an extended discussion of problems with
the nanomechanical computer described in Eric Drexler’sNanosystems. Fi‐
nally, Appendix D contains some related forecasts to more transparently
convey my own expectations.

Ideally, this kind of exercise would be done by a panel with overlapping
areas of expertise. My effort is far from exhaustive, but I hope it at least
shows how this approach might usefully fit into a broader forecasting or
planning project. If I wanted to single out a few particular themes I think
existing analyses don’t fully appreciate:

1. Models of transformative change would strongly benefit from deeper
inside views.

2. Hardware specialization is ameaningful obstacle to rapid growth through
paradigm shifts or redeployment of resources.
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3. A robust open‐source community and publicly‐ownedAI services can
dampen AI growth along paths that require large, lumpy capital in‐
vestment, in part by reducing the potential for AI ventures to capture
profits.

4. Progress in industry at scale is not limited by “ideas” in the same way
that basic research could imaginably be.

Scenario 1

In this scenario, profits never materialize and venture capital thins out.
Nonprofits and governments are still willing to fundprojects for public ben‐
efit or military advantage, but there’s no strictly financial virtuous cycle in
which returns on investment accrue to investors, bypassing the economy
as a whole.

As far as there are periods of rapid technical progress, they are self‐
limiting. AI progress is “lumpy”, each step requiring large initial invest‐
ments and long training runs on a fixed course. As long as the quantity of
inputs you can buy at a given price is growing much faster than the rest of
the economy, it’s oftenbetter towait to train a bettermodel at the same cost.
Uncertainty about the landscapeby the endof a training runalsomoderates
investment.2 Explosive growth would entail unprecedented “creative de‐ 2 Often attributed to Robert Palmer: “De‐

signing microprocessors is like playing
Russian roulette. You put a gun to your
head, pull the trigger, and find out four
years later if you blew your brains out.”
More abstractly, this is the sort of equi‐
librating dynamic that can help maintain
the “knife‐edge” condition of constant ex‐
ponential growth considered in Davidson
2021a.

struction”, as noted in Jones 2021. Competition keeps margins low, and ob‐
solescence is a sharp cliff: any given product has only until a better model
is trained to recoup training costs.

Research nevertheless continues deep into the current paradigm. Fur‐
ther incremental advances facediminishing returns as far as they staywithin
that paradigm. Breakthroughs departing from it, on the other hand, have
to compete with accumulated years of research and investment: special‐
ized datacenters of specialized hardware, mature software architectures
and data pipelines, and a large pool of research and engineering expertise.
The expected benefit of bringing a potential breakthrough to scale is rarely
worth any catch‐up costs that could instead be invested in steady progress
over the same period.3 3 This dynamic is illustrated repeatedly

in Cyrus Mody’s The Long Arm of Moore’s
Law: Microelectronics and American Sci-
ence: “[Richard Smalley’s startup Car‐
bon Nanotechnologies, Inc.]’s nanotubes
never made their way into IBM’s com‐
mercial transistors, or anyone’s, in large
part for the same reason that Josephson
computing and the earlier generations of
molecular electronics didn’t succeed. Sil‐
icon moved right past all its competitors,
as predicted by Moore’s Law.” (Mody 2016,
p. 211)

This is analogous to the situation the semiconductor industry finds itself
in. For a time, pre‐competitive collaboration through industry roadmaps
and consortia like SEMATECH allowed players to share development costs
towards common targets 10–15 years in the future. Semiconductor consor‐
tia still exist, but simultaneous industry fragmentation and leading‐edge

https://en.wikipedia.org/wiki/Robert_Palmer_(computer_businessman)
https://en.wikipedia.org/wiki/International_Technology_Roadmap_for_Semiconductors
https://en.wikipedia.org/wiki/SEMATECH
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foundry consolidation has reduced their membership and influence today.
The AI industry finds itself unable to follow this example. Short‐term un‐
predictability and competitive pressures limit the size and length of bets
industry players are willing to make.

In this scenario, AI will contribute to social and economic change, but
it is not on a path to reach transformative capabilities.

Key drivers and indicators

Key drivers towards this scenario relate to profitability of AI research and
production:

1A Specializationofhardware and infrastructure for aparticular paradigm
of AI

1B AI training runs as major capital projects

1C Difficulty capturing value from training large AI models

1D Uncertainty about returns from scaling newmethods

Indicators—hypothetical observations that would lead us to expect the
future to have more in common with this scenario:

1a. Technologies likeTPUs, low‐precisionarithmetic, and specialized servers
and data centers dominate general purpose CPUs, consumer GPUs,
and traditional datacenters for use in AI.4 (+A) 4 For example, we observe that Meta

has canceled or paused datacenters mid‐
development and has recently described
its next‐gen datacenter design in a pivot to
generative AI workloads.

1b. Training and deployment in particular use different hardware and in‐
frastructure. A datacenter used for training can’t be turned around
and used for inference without suffering major inefficiencies. Hard‐
ware specialized for LLMs puts new paradigms at a disadvantage out
of the gate. (+A, +B)

1c. Generic progress in the semiconductor industry only marginally ad‐
vances AI hardware; for example, AI hardware lags general‐purpose
hardware in switching to new process nodes. (+A)

1d. Conversely, advances in AI hardware are difficult to repurpose for
the rest of the semiconductor industry. For example, AI training re‐
quirements drive High Bandwidth Memory development, but GDDR
or LPDDR suffices for other high‐volume, high‐performance applica‐
tions.5 (+A) 5 Some discussion of the differences here.

https://www.datacenterdynamics.com/en/news/exclusive-after-meta-cancels-odense-data-center-expansion-other-projects-are-being-rescoped/
https://www.datacenterdynamics.com/en/news/exclusive-after-meta-cancels-odense-data-center-expansion-other-projects-are-being-rescoped/
https://www.datacenterdynamics.com/en/analysis/meta-details-ai-data-center-redesign-that-led-to-facilities-being-scrapped/
https://semiengineering.com/choosing-the-correct-high-bandwidth-memory/
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1e. Specialized hardware production is always scaling to meet demand;
at any given time, essentially all suitable hardware is deployed in AI.
Proxy indicators include the growth of specialized firms. (+A)

1f. Research progress is driven chiefly by what we learn from the largest
andmost expensive projects. Largemodels can’t be effectively under‐
stood using small proxies with the same architecture. New systems
have unpredictable capabilities, outside expectations from “scaling
laws”; progress is even non‐monotonic in some domains. (+B, +D)

1g. Open‐source models and second‐tier competitors lag the state of the
art by around one large training run. (+C, +D)

1h. Small models can be cheaply trained by using expensive models for
evaluation, achieving results nearly as goodatmuch lower cost. Model
weights are leaked, pirated, or otherwise exfiltrated. (+C)

1i. Progress in capabilities at the frontier originates from small‐scale ex‐
periments or theoretical developments several years prior, brought
to scale at some expense and risk of failure. (This is the status quo in
hardware.) (+D)

Negative indicators—hypothetical observations that would lead us to
expect the future to have less in common with this scenario:

1j. The same hardware pushes the frontier of performance per watt not
only forAI training and inference but also for high‐performance com‐
puting more traditionally. (–A)

1k. Emerging hardware technologies like exotic materials for neuromor‐
phic computing successfully attach themselves as adjuncts to general‐
purpose silicon processes, giving themselves a self‐sustaining route
to scale. (–A)

1l. Training runs use as much compute as they can afford; there’s always
a marginal stock of hardware that can be repurposed for AI as soon
as AI applications become slightly more economical. (–A)

1m. Industry players engage in pre‐competitive collaboration, for exam‐
ple setting interoperability standards or jointly funding the training
of a shared foundation model. (–B)

1n. Alternatively, early industry leaders establishmonopolistic advantages
over the rest of the field. (–B, –C)
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1o. AI training becomes more continuous, rather than something one
“pulls the trigger” on. Models see large benefits from “online” train‐
ing as they’re being used, as compared with progress from model to
model. (–B)

1p. Old models have staying power, perhaps being cheaper to run or tai‐
lored to niche applications. (–C)

1q. Advances in AI at scale originate from experiments or theory with
relatively little trouble applying themat scalewithin a fewyears. (This
is the status quo in software.) (–D)

1r. The leading edge features different AI paradigms or significant churn
between methods. (–A, –D)

Scenario 2

In this scenario, the balance tips and investment pours in. AI technol‐
ogy advances, new markets are unlocked, more money comes in, more re‐
search is done. This is not an exceptional pattern. Government subsidies
kickstarted the virtuous cycle in renewable energy technology,6 as did de‐ 6 Roser 2020.
fense spending in semiconductor research. Sometimes the cycle involves
less R&D and looks like abstracted “returns to scale” (“learning rate”, “expe‐
rience curve”)—every time cumulative production doubles, per‐unit costs
decrease by some fraction. Nothing about this necessarily involves direct
feedback from outputs to inputs.

Ifmore advancedAImakes further advances easier, wemight expect the
AI industry’s learning rate to grow over time, leading to explosive growth.
Still, AI here isn’t obviously qualitatively different from the semiconductor
industry, where continued progress leans heavily on modern computers,
or even from the energy industry, where cheaper power makes everything
easier. In the medium term, such positive feedback balances at some level
with diminishing returns—both “intrinsic” (the same spending yields less
performanceprogress) and “extrinsic” (as one input to productionbecomes
less costly, it becomes a smaller fractionof total production costs, so further
improvements will be less beneficial—as in Amdahl’s law).

In this scenario, growth is not explosive, but instead follows roughly the
same curve it’s been following. AI becomes capable of assisting in AI re‐
search and development, perhaps even unpredictably and rapidly surpass‐
ing human efforts, but this looksmore like a one‐time decrease in costs per

https://en.wikipedia.org/wiki/Amdahl%27s_law
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“unit” of R&D. Other inputs like hardware and logistics do not keep up in
efficiency gains, so such inputs soon dominate the pace and price of both
AI R&D and practical deployment.

One important bottleneck is science. Experiments take time and aren’t
particularly bound by human schedules or a shortage of “ideas” to begin
with. Individual steps have non‐trivial physical rate limits: temperature
ramp times, siliconpull rates, vacuumpumpspeed, chemical reaction rates,
measurementbandwidth. Manyexperimentsneed tohappen serially. Where
it matters, experimental design is already highly optimized by humans. AI
ismost helpful when it can replace experiments with simulation, but physi‐
cal simulation is intrinsically hard, already highly optimized, and rarely ex‐
act enough to obviate experiments. Neural networks as surrogate models
accelerate many results, but sometimes we still have to solve the equations
the way we already do.

Even within software, AI R&D isn’t bottlenecked by how fast code or
ideas are generated. Comparing increasingly highly capable AI systems
is subtle, and so requires time‐consuming computational experiments to
evaluate any changes. Models are not fully general or are assembled from
interacting specialized modules that can’t be evaluated on their own, so it
takes many separate experiments to advance the frontier.

Finally, it turns out there’s just not that much room for improvement.
Gains from hardware top out at two or three orders of magnitude from the
remnants of scaling and architecture specialization. Exact algorithms are
already close to optimal, and making faster approximations doesn’t yield
superintelligence. Photonic computing is limited to niche applications out‐
side high‐performance computing. Quantumadvantage isminimal outside
a narrow set of problems. Reversible computers are impractical. Nanome‐
chanical computers are unpromising (Appendix C).

As a result, AI growth remains tethered to the rest of the economy. AI
may drive economic growth, but transformative potential is bottlenecked
by activity other than that of deployed AI.

Key drivers and indicators

Key drivers towards this scenario relate to howmuch AI can accelerate the
non‐AI inputs to AI R&D:

2A Limited generality of AI applicability

2B Limits on headroom for progress

https://en.wikipedia.org/wiki/Surrogate_model
https://www.csail.mit.edu/event/how-close-are-algorithms-being-optimal
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2C Bottlenecks in logistics, construction, and other serial physical activ‐
ity

2D Difficulty of substituting theory or simulation for experiment

Indicators—hypothetical observations that would lead us to expect the
future to have more in common with this scenario:

2a. Progress in AI is very uneven across domains—each faces different
bottlenecks that are addressed individually. (+A)

2b. Apparent technical wins—upgrades with predictable effectiveness—
are left on the table, because they only affect a fraction of perfor‐
mance and impose adoption costs on the entire system. (+B, +C)7 7 This is a bit oblique, but it’s an indicator

of how “bottlenecky” a domain is. One ex‐
amplemight bewhat happened to 450mm
wafers. Even though you get 2.25x more
area per wafer (over the current 300mm
standard), a large enough fraction of costs
scale with area such that the net cost per
areamay only go down by 20–25%. At that
point, it becomes difficult to justify the
cost of developing new equipment and up‐
grading fabs.

2c. The semiconductor industry continues to fragment. Large consortia
die out. Progress comes not from coordinated industry‐wide innova‐
tion but from specialization in all possible directions.8 (+B)

8 Leiserson et al. 2020.

2d. More broadly, semiconductor industry trends continue: foundry con‐
solidation continues, foundry construction costs and times continue
to rise, chip design costs continue to rise, fabrication costs continue
to rise, all exponentially and with diminishing returns. (+B, +C)

2e. Semiconductor industry roadmaps continue to extend10–15 years out.
The roadmaps are stable, suggesting that “ideas” are not a bottleneck.
Gate‐all‐around (GAA) field effect transistors (FET) replace FinFETs
in new process nodes; Complementary FET (CFET) designs succeed
those, and they do so no sooner than 2032. (+C, +D)

2f. AI research progress is driven by training large models and seeing
what happens. (+D)

Negative indicators—hypothetical observations that would lead us to ex‐
pect the future to have less in common with this scenario:9 9 The positive indicators are basically the

status quo, and these are basically “some‐
thing revolutionary happens”. With more
time and imagination onemight be able to
write something more useful.

2g. The same general AI is broadly deployed in different domains, in‐
dustry coordination is strong (throughmonopoly or standardization),
and upgrades hit many domains together. (–A)

2h. Evidence builds that a beyond‐silicon computing paradigm could de‐
liver performance beyond the roadmap for the next 15 years of sili‐
con. (See Appendix C for an example of what I would not count as
evidence.) (–B)

https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/450mm-wafers
https://community.cadence.com/cadence_blogs_8/b/breakfast-bytes/posts/450mm-wafers
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2i. New semiconductor consortia arise, for example producing consen‐
sus chiplet or heterogeneous integration standards, making it easier
for a fragmented industry to continue to build on one another’s work.
(–C)

2j. Spatial/robotics problems in particular—proprioception, navigation,
manipulation—are solved. (–C)

2k. Fusion power becomes practical. (–C)

2l. AI is applied to experimental design and yields markedly better re‐
sults than modern methods. (–D)

2m. AI research progress is driven by theory. (–D)

2n. Breakthroughs makemicroscopic physical simulation orders of mag‐
nitude easier. Molecular dynamics, density functional theory, quan‐
tum simulation, and other foundational methods are accelerated by
AI while also greatly improving accuracy. (–D)

https://en.wikipedia.org/wiki/Optimal_design
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Appendices

Appendix A Selecting methods, scenarios, key drivers, and
indicators

I am a scientist working on experimental special‐purpose electronic hard‐
ware unrelated tomachine learning. I have no affiliationwith any organiza‐
tionmentioned in this document. What I’vewrittenheredoesnot represent
the views of my employer.

The seed of this document is a sense that something is missing in exist‐
ingwriting about catastrophic risk fromAI, arising in particular in reaction
to Cotra 2020 (“Bio Anchors”), Carlsmith 2021 (“Power‐Seeking AI”), David‐
son2021a (“ExplosiveGrowth”), andDavidson2023 (“Compute‐Centric Frame‐
work”).10 The level of discussion is generally abstract, even in situations 10 Others include Carlsmith 2020; David‐

son 2021b, and several related blog posts
on Cold Takes, Open Philanthropy, and
Less Wrong. I’m long familiar with argu‐
ments about AI as an existential risk, al‐
though I’ve only recently begun to catch
up onwriting about AI alignment from the
past several years.

where detail is relatively easily available and informative.
From “BioAnchors”, on estimates of growth of effective FLOPper dollar,

historically, in the medium term, and in the long term: “Because they have
not been the primary focus of my research, I consider these estimates un‐
usually unstable, and expect that talking to a hardware expert could easily
change my mind.” On room for medium‐term improvements in silicon,11

11 I’m not pointing this out as a critique of
“Bio Anchors”—Cotra correctly notes that
variation within the range of uncertainty
here does not affect its conclusions. At the
same time, becoming much more famil‐
iar with these sorts of details can lead one
towards qualitatively different approaches
to thinking about the future.

Of all the quantitative estimates in this document, I consider
these forecasts the most likely to be knowably mistaken. While
most of the other quantitative estimates in this document have
a lot more absolute uncertainty associated with them, there is a
lotmore low‐hanging fruit left in improving short‐ andmedium‐
term hardware price forecasts. For example, my understand‐
ing is that semiconductor industry professionals regularly write
highly detailed technical reports forecasting a number of hard‐
ware cost‐efficiency metrics, and I have neither read any of this
literature nor interviewed any hardware experts on this ques‐
tion. Paul is a machine learning researcher, not a hardware ex‐
pert, andheonly spent a fewhours thinking about this question;
I spent even less time discussing it with him.

Or consider “Compute‐Centric Framework” on what evidence we have
about substitutability for AI inputs:12 12 Davidson 2023, Part 2, p. 15.

The thirdbucket of ‘evidence’ is simplydoing inside‐view thought
experiments13 about what you think would happen in a world 13 I would not call what is described here

“inside view”, except perhaps in a relative
sense.

https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.nmcod2jynsy4
https://docs.google.com/document/d/1qjgBkoHO_kDuUYqy_Vws0fpf-dG5pTU4b8Uej6ff2Fg/edit#heading=h.nmcod2jynsy4
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#bookmark=id.gpdqttqd4hbs
https://docs.google.com/document/d/15EmltGq-kkiLO95AbvoB4ODVpyg26BgghvHBy1JDyZY/edit#bookmark=id.gpdqttqd4hbs


Appendix A Selecting methods, scenarios, key drivers, and indicators 11

with zillions ofAGIsworkingon (e.g.) hardwareR&D.Howmuch
more quickly could they improve chip designs than we are cur‐
rently, despite having access to the same fixed supply of phys‐
ical machinery to use for experiments? If you think that hard‐
ware progress would be 100X its current pace, you can use this
to “back out” a value of ρ [substitution parameter in the CES pro‐
duction function] consistent with that. This type of thought ex‐
periment gets at ρ for cognitive tasks vs non‐cognitive tasks....

Doing this kind of inside‐view thought experiment gets into lots
of tricky issues like “Could you replace physical experiments
with simulations?” and “Howmanyexperimentswouldbeneeded
for a smart enough team of AIs to discover nanotech and use it
to design better chips?”. These questions are, I think, worthy of
much more investigation. It would be useful to think through
specific candidate bottlenecks concretely and assess howmuch
they would slow down progress.

This third bucket of ‘evidence’ leads me, at least in the case of
hardware R&D, to higher estimates of than the first bucket [em‐
pirical macroeconomic research]. If ρ = −0.5 and [share pa‐
rameter for substitutable tasks] α = 0.3 (as I suggested for hard‐
ware R&D), then even zillions of AGIs would only increase the
pace of hardware progress by ∼10X. But with billions of AGIs
thinking 1000X as fast and optimising every experiment, I think
progress couldbe at least 20Xquicker than today, plausibly 100X.
If α = 0.3, a 100X speed up implies ρ = −0.25. I expect some
people to favour largernumbers still. Very largenumberswould
favour choosing a value of ρ very close to 0 (but still negative),
which would approximate Cobb Douglas (ρ = 0).

This is one of the most important parameters in the model,14 and the 14 Well, maybe. See a bit further below.
thought experiments or intuitions used to produce the quotedmultiples are
not even described, let alone spelled out. Frommy perspective, it’s hard to
imagine this happening for anything that requires new process recipes, let
alone tool upgrades. That leaves improving chip architecture given fixed
elements, and there may not even be enough room for improvement there
for 100X faster R&D to be meaningfully measured. If we stopped building
fabs now, I imagine we’d squeeze everything we could out of current pro‐
cesses well within 10 years. I could be convinced that zillions of AGIs could
do the same in months, if only because it presupposes enough compute

https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
https://en.wikipedia.org/wiki/Constant_elasticity_of_substitution
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to brute‐force optimization. But I think the interpretation of CES parame‐
terswewant should exclude that presupposition fromconsideration—we’re
supposed to be pumping intuitions for how much AI can help with things
like simulation in the first place. I’m not sure how to make this picture co‐
herent.15 15 The actual model in question ignores

physical simulation. I think footnote 38
basically agrees about the problem, but I
don’t know what to make of the proposed
workaround: “This leaves it ambiguous
whether the AGIs have access to unlimited
compute for running simulations. In the
FTM, the potential importance of simula‐
tions for hardware R&D is not modelled.
In practice, then around and shortly af‐
ter AGI there will be a fair bit of compu‐
tation available for simulations like this.
(They’ll be at least the compute needed to
train AGI, and there will be strong incen‐
tives to use compute for hardware R&D.)
But there won’t be ∼infinite computation
sitting around. So probably the best thing
to imagine for this thought experiment, is
‘you have a decent amount of compute for
simulations, but not an insane amount so
you can’t just brute force things’.” David‐
son 2023, Part 2, p. 21

One thing I’m getting at in particular is that it’s difficult to “sanity check”
surprising resultswithout somebreadcrumbsback to concretemechanisms.
For example, tinkering on the “Compute‐Centric Framework” model play‐
ground, it’s clear that the main conclusions are robust in most parameters.
Even parameters that seem like they should be important barely move the
conclusions. There’s also some outright counter‐intuitive behavior—for ex‐
ample, changing various parameters in a conservative direction brings “pre
wake‐up”, “wake‐up”, and “mid rampup” closer to the present. (Most sim‐
ply, I’ve found that starting with the “best guess” preset, increasing hard‐
ware adoption delay does this; so does increasing bothAGI training require‐
ments and effective FLOP gap, keeping the ratio constant so that the FLOP
requirement for 20% automation should be constant.) I worry that the ap‐
parent robustness is a sign that the conclusions about takeoff speeds are
“baked in” to the model in some way—that a much simpler picture could
give the same result, and the complexity of the model only serves to ob‐
scure that result.16

16 I have some similar feelings about “Bio
Anchors”—for example, the convolution
of 2020‐equivalent FLOPs and algorithmic
progress under different anchors—but in
the end, it’s open about multiplying to‐
gether very uncertain estimates of a few
key numbers.

I also agree with Ben Jones in his review of “Explosive Growth”:17

17 Jones 2021.

Ultimately, I think bottlenecks are where the action is. An in‐
teresting descriptive exercise would be to consider (a) the cur‐
rent array of goods and services that humans consume to see
which ones seem both essential to the standard of living and
least amenable to a scalable automation solution and (b) the ar‐
ray of activities in scientific and technological advance that are
amenable to a scalable intelligence. It doesn’t take much in the
way of bottlenecks to severely undermine the growth implica‐
tions of AI, even if AI is really fantastic at very many things.

Frommyexperience and reading about forecasting and structured anal‐
ysis, some formof “scenario analysis” (“alternative futures”, “scenario plan‐
ning”, ...) is suitable for filling in these sorts of missing causal pieces. For
example, from “A Tradecraft Primer: Structured Analytic Techniques for
Improving Intelligence Analysis”, p. 34:

Alternative futures analysis (often referred to as “scenarios”) is

https://takeoffspeeds.com/playground.html
https://takeoffspeeds.com/playground.html
https://docs.google.com/document/d/1jP9Bb6J6BXH5v6EshsPF2NE1GiWatPxUUrK9wDEpTqA/
https://www.cia.gov/static/955180a45afe3f5013772c313b16face/Tradecraft-Primer-apr09.pdf
https://www.cia.gov/static/955180a45afe3f5013772c313b16face/Tradecraft-Primer-apr09.pdf
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most useful when a situation is viewed as too complex or the
outcomes as too uncertain to trust a single outcomeassessment.
First, analystsmust recognize that there is high uncertainty sur‐
rounding the topic in question. Second, they, and often their
customers, recognize that they need to consider a wide range
of factors that might bear on the question. And third, they are
prepared to explore a range of outcomes and are not wedded to
any preconceived result....

Alternative futures analysis is extremely useful in highly am‐
biguous situations,whenanalysts confrontnot only a lot of “known
unknowns” but also “unknown unknowns.” What this means
is that analysts recognize that there are factors, forces, and dy‐
namics among key actors that are difficult to identify without
the use of some structured technique that can model how they
would interact or behave.

I’m largely deferring to the judgment of others here; I’m not aware of
quantitative or systematic comparisons of different techniques like this. I
also don’t exactly follow any one methodology, since these generally in‐
volvemultiple people, slightly different goals, andmuchmore time than ap‐
propriate for this context. I do try to follow some recommended practices,
including from an assessment of structured analytic techniques (SATs) by
RAND:

Our pilot study did suggest several best practices, particularly in
documents containing alternative scenarios, the SAT employed
most frequently in our sample. One area for improvement in
someof thedocumentswas, in ouropinion, greater transparency
about the reasoning behind the scenarios:

• In particular, when intelligence analyses posit key drivers,
it would be useful to know how theywere selected andwhy
they were consideredmore important than other potential
drivers.

• In addition, it would be helpful to explain—perhaps in a
box or appendix—the methodology that was used to con‐
struct the scenarios. These steps would help maximize the
valueof SATs inmaking clear to readershowanalysts reached
their key judgments.

https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1408/RAND_RR1408.pdf
https://www.rand.org/content/dam/rand/pubs/research_reports/RR1400/RR1408/RAND_RR1408.pdf
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• Scenario papers also are most useful when they include
concrete and observable indicators that signal which out‐
come is becoming more likely, rather than broad general‐
ities that are difficult to measure.

I don’t feel I’ve fully succeeded in the last point; all the indicators are still
fairly broad generalities, owing to time constraints and the consequential
emphasis on communicating a way of thinking about the problem rather
than on particular conclusions. Still, in accordance with the other recom‐
mendations, I’ll try to explain some of my decisions below.

Scenarios aren’t entirely new to AI forecasting,18 although they do seem 18 A good example for catastrophic scenar‐
ios is Sotala 2018.underused. There ismoreof a gap indescriptions of “safe” scenarios. Grace

2022 is a strong exception, but given the different framing and emphasis,
my approach is not redundant. I decided to focus on scenarios with AI ca‐
pable of contributing to scientific research where nonetheless there is no
explosive growth in economic activity or AI capability. Such scenarios help
fill that gap andhighlight somedetails that feed intomydisagreementswith
existing forecasts on the impact of AI, many of which are rooted in my rel‐
ative familiarity with semiconductor research and development.

Someof these details I first identified included specific “Baumol tasks”,19 19 Aghion, Jones, and Jones 2017.
practical drivers of diminishingR&Dreturnsunrelated to ideas gettingharder
to find, how long things take in the semiconductor industry, andmore pes‐
simistic limits to physical and learning capabilities.

I began categorizing these details into themes that I thought might an‐
chor scenarios:

1. Economic and scaling considerations limitwhether andhow fast “break‐
throughs”20 make it to production in large‐scale industries 20 say, emerging technologies that are ob‐

jectively superior in some particular sense
2. Real‐world logistic activity limits the pace of feedback cycles

3. Serial experimental requirements limit the pace of feedback cycles

4. Technological capabilities are generally bounded

Thebestway I couldfind to balance thesewaswith two scenarios, where
Scenario 1 mainly captures the first point, while Scenario 2 captures the
next two together. While their respective drivers are not mutually exclu‐
sive, Scenario 2 still works as conditional on avoiding Scenario 1. The last
point is a vast topic and I address only a small part of it in Appendix C.21 I at‐ 21 Interesting related work includes

Markov 2014 and research by Neil Thomp‐
son and collaborators.

tempted to describe observable indicators for relevant details, and then dis‐
tilled key drivers corresponding to groups of those indicators on a slightly

http://www.neil-t.com/moores-law-and-computer-performance/
http://www.neil-t.com/moores-law-and-computer-performance/
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higher level of abstraction. From there, the scenarios, drivers, and indi‐
cators evolved together, mainly as I made the indicators more or less con‐
crete.

Appendix B From research demonstration to production at
scale

How long does it take to bring a new technology to semiconductor produc‐
tion? I’ve often heard estimates of 10–15 year lead times. For example, Joel
Hruska, “How Are Process Nodes Defined”?:

Semiconductor manufacturing involves tremendous capital ex‐
penditure and a great deal of long‐term research. The average
length of time between when a new technological approach is
introduced in a paper and when it hits widescale commercial
manufacturing is on the order of 10–15 years. Decades ago, the
semiconductor industry recognized that it would be to every‐
one’s advantage if a general roadmap existed for node introduc‐
tions and the feature sizes those nodeswould target. This would
allow for the broad, simultaneous development of all the pieces
of the puzzle required to bring a new node to market. For many
years, the ITRS—the International TechnologyRoadmap for Semiconductors—
published a general roadmap for the industry. These roadmaps
stretched over 15 years and set general targets for the semicon‐
ductor market.

James Clarke, Intel:

Intel was remarkably consistent [between roadmaps and results
in quantum computing technologies], because we know how
long it takes to develop a new technology. Even if we come out
on a two‐year cadence for transistor technology, the develop‐
ment time for those technologies is 10 to 12 years.

BostonConsultingGroupandSemiconductor IndustryAssociation, “Strength‐
ening the Global Semiconductor Supply Chain in an Uncertain Era”:

The average length of time between when a new technologi‐
cal approach is introduced in a research paper and when it hits
widescale commercial manufacturing is estimated to be about
10–15 years, but it could be much longer than that for scientific

https://www.extremetech.com/computing/296154-how-are-process-nodes-defined
https://www.extremetech.com/computing/296154-how-are-process-nodes-defined
https://www.hpcwire.com/2022/12/13/intel-quantum-wisdom-think-quantum-is-powerful-youre-right-think-it-will-happen-soon-youre-mistaken/
https://www.semiconductors.org/wp-content/uploads/2021/05/BCG-x-SIA-Strengthening-the-Global-Semiconductor-Value-Chain-April-2021_1.pdf
https://www.semiconductors.org/wp-content/uploads/2021/05/BCG-x-SIA-Strengthening-the-Global-Semiconductor-Value-Chain-April-2021_1.pdf
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Advance Demonstration[/Focus] Production

MOSFET 1959 1971 (first microprocessors)
Shallow trench isolation ∼Shibata et al. 1983 1997 (250nm)

Strained silicon 1992/1998 2003
High‐κ dielectric 1996/1998 ∼ 2007 (45 nm)

Raised source/drain 1993/1998 2009
Multigate FET 1987/2000 2011

FinFET ∼Hisamoto et al. 1998/2000 2012–2013 (22 nm)
GAA ∼Lee et al. 2006 2024 (imec roadmap)
CFET imec 2020 2032 (potential roadmap extension)

Table 1: First demonstrations and first use in large‐
scale production of major advances in front‐end‐of‐
line processes.

breakthroughs that enable the current leading edge technolo‐
gies. For example, Extreme Ultra‐Violet (EUV) technology that
is fundamental for themost advanced semiconductormanufac‐
turing nodes took almost four decades from the early concept
demos to its commercial implementation in fabs.

Table 1 showsa selectionofmajor front‐end‐of‐line advances,withdates
forfirst demonstrationandfirst production. Dates for strained silicon, high‐
κ dielectrics, raised source/drain, and multigate devices are from the 2022
IRDS report (Figure ES50), which separates early invention dates and the
beginning of “focused research”.22 The imec roadmap after GAA transis‐ 22 I haven’t independently checked these

dates, and specific references aren’t pro‐
vided. I had previously done a cursory
check for high‐κ dielectric literature and
had come up with 1999/2000. I think
1996/1998 also makes sense; there isn’t
a single watershed result I can point to,
and focused interest would have preceded
publications by a year or two.

tors goes out to 2036. For the remainder, I usedmy own somewhat arbitrary
judgment for both the selection of advances and the interpretation of “first
demonstration”, but this is the sort of thing people are thinking of when
they say 10–15 years.

There are important related question about slack in that lead time. How
many of those 10–15 years are for humans to take bathroom breaks? (Figu‐
ratively speaking.)

Howmuch time do you need for serial experiments to solve problems of
production at scale: process compatibility, thermal/mechanical/electrical
integration, yield, throughput, aging? Is the time between demonstration
and focused research required to select that technology from a field of can‐
didates, or is the invention simply languishing until it’s relevant? Is there
slack in industry coordination that a unitary AIwould tighten? (Perhaps not
asmuchas onemight think—thiswas thepoint of extensive pre‐competitive
collaboration in the industry.)23 23 See for example the quote from Joel

Hruska above, or the successor to ITRS on
its origin: “The goal of [the first Interna‐
tional Roadmap for Semiconductors pro‐
gram in 1998] consisted of reducing the
historical time of ∼25 years between ma‐
jor transistor innovations to less than half
in order to save the semiconductor indus‐
try from reaching a major crisis.” IEEE
2022, Executive Summary, p. 66.

https://www.tomshardware.com/news/imecs-sub-1nm-process-node-and-transistor-roadmap-until-2036-from-nanometers-to-the-angstrom-era
https://en.wikipedia.org/wiki/Front_end_of_line
https://twitter.com/ESYudkowsky/status/1658616828741160960
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Speeding up this process is one of those problemswhere themore detail
you know, the harder it automatically looks. My inside‐view answers may
be biased towards saying AI won’t makemuch headway, sincemy head is in
these details—but an AI or even future humansmay findways around them
entirely, devoting great resources to doing so if necessary. Still, outside‐
view arguments that a pipeline bringing physical technology from concept
to semiconductor‐industry scale could be sped up by a factor of 10 are ex‐
tremely unpersuasive to me.

Appendix C Nanomechanical computers

In Chapter 12 of Nanosystems, Eric Drexler “examines a representative set
of components and subsystems for nanomechanical computers”.24 He de‐ 24 Drexler 1992, p. 342.
scribes amechanical system ofmoving logic rods, sliding against a housing
and pressing against one another, operating at room temperature, moving
in a switching time of 0.1 ns, cycling at 1GHz, dissipating around 1/600 of its
mechanical energy per cycle, and suffering one error in every 1064 gates.

I hope to convey how implausible this is from the perspective of mod‐
ern nanomechanics. Intuition should suggest large error rates and much
more dissipation. Below, I find tighter upper bounds on performance, with
10−3 error rates and dissipation per cycle comparable to the mechanical
energy involved. These bounds use favorable calculations based on funda‐
mental processes and relations ignored inNanosystems; a more realistic es‐
timate would suggest dissipation and noise worse by further orders ofmag‐
nitude. Some calculations use the specifics of the exemplar logic system,
but the same considerations apply generally to themolecular assemblies of
Nanosystems in this operating regime.

Appendix C.1 Dissipation

The lowest‐loss acoustic materials—defect‐free bulk crystals and epitaxial
films—might be able to keep dissipation that low at room temperature. In
these systems, vibrations displace atoms in a highly regular crystal lattice
of nearly ideal harmonic potentials (that is, the restoring force is nearly
linear in displacement). A resonator can be engineered to confine these
vibrations at a specific frequency—like a tuning fork or a quartz oscillator
in awristwatch—while allowing only a small fraction of the acoustic energy
to be converted into other kinds of motion with each oscillation.

That dissipation is usually described in terms of a resonator’s “quality
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factor”, defined as Q = 2π × energy stored
energy lost per cycle . A resonator that lost 1/600

of its energy per cycle would have a Q factor of 2π × 600 ≈ 3770. Some
loss mechanisms are specific to the resonator geometry, like acoustic ra‐
diation through points where the resonator is anchored to its substrate;
somemechanisms originate in intrinsicmaterial properties but can still be
affected by resonator design, like thermoelastic damping; some are fully
intrinsic, as the slight nonlinearity of interatomic forces allows acoustic
excitations (phonons) to interact with one another locally. Non‐resonant
motion suffers attenuation by the same mechanisms and can be described
by theQ equivalent to that attenuation.

These mechanisms and the limits they impose have been theoretically
and experimentally studied in nanoscalemechanical systems, althoughnot
in the language of Nanosystems.25 From this perspective, a simple funda‐ 25 For example, see Lifshitz and Roukes

2000; Cleland and Roukes 2002; Chan‐
dorkar et al. 2008; Ghaffari et al. 2013; Ro‐
driguez et al. 2019; Bachtold, Moser, and
Dykman 2022.

mental limit on dissipation in the nanomechanical computer is at least two
orders ofmagnitudeworse, and limits in anypractical device orders ofmag‐
nitude further.

Limits to f · Q The damping mechanism first described by Akhiezer26 is 26 Akhieser 1939.
both intrinsic and local, originating from elastic nonlinearities, and thus
generally insensitive to design. Akhiezer damping puts a fundamental limit
on the product ofQ and acoustic frequency f for a material at a given tem‐
perature:27 27 Cleland 2013, Chapter 8.

(f ·Q)max ≈
ρv2ϕ

2πγ2
effcV Tτth

, (1)

where ρ is material density, vϕ is the phase velocity of sound, cV is the
specific heat capacity at constant volume, τth is the phonon thermaliza‐
tion time, T is the temperature, and γeff is the effective Grüneisen param‐
eter, which is a measure of the involved elastic nonlinearities intrinsic to
the material. That nonlinearity means that the strain due to the acoustic
mode at frequency f modulates the frequencies of thermal phonons al‐
readypresent, creating temperature variationbetween local phononmodes
that quickly equilibrate by removing energy from the non‐thermal strain
field.28 (This is in contrast to thermoelastic damping, which involves equi‐ 28 If the oscillation is fast compared to the

phonon thermalization time (fτth > 1),
you enter a different damping regime that
can exceed this limit, but that would re‐
quire something like operating at 1 THz—
not relevant here.

libration by thermal conduction between different spatial points.)
For diamond at room temperature, that limit is about Q · f ≤ 3.7 ×

1013 Hz.29 If your resonator has a cycle time of 1 ns—a frequency of 1GHz—

29 Chandorkar et al. 2008.

then the maximum Q would be 37,000. Nothing about this process is spe‐
cific to resonators. If you’re moving acoustic energy at 10GHz—as with
a mechanical switch accelerating and stopping in 0.1 ns bursts—then the
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maximum equivalent Q at that frequency would be 3,700, and you’d lose
2π/Q ≈ 1/600 of your energy in 0.1 ns.

It’s entirely coincidental how close this is to the calculated dissipation in
the nanomechanical computer, becauseDrexler ignores Akhiezer damping
in his calculations.30 30 He does give a statement of a special

case (using the “phonon viscosity” formu‐
lation first given by Mason 1960) in sec‐
tion 7.4.2, correctly observing that this
case can be ignored for the vibrational
modes of individual components. There’s
also a related dismissal in section 7.3.7,
“Interfacial phonon‐phonon scattering”:
“Nonlinear interactions permit phonons
to scatter from one another, and the
restoring forces in a nonbonded interface
are substantially nonlinear.... A prelimi‐
nary evaluation suggests that this effect is
small, but a more thorough investigation
would be desirable.”

One’s intuition ought to be that the nanomechanical logic systemwould
at best dissipate on the order of all its stored energy every cycle, and prob‐
ably would be overdamped.

The claimedperformancewould alreadybeupagainst fundamental lim‐
its if the nanomechanical computer were a single defect‐free isotopically
pure diamond crystal. But, instead, it’s made up of small components con‐
strained by and collidingwith one another under non‐bonded interactions.

We shouldnaturally consider the collectivemotionof those components—
phonons in a material made of heavy “atoms” with van‐der‐Waals “bonds”
between them. It looks like a molecular solid, and it’s the motion of these
molecules that constitutes the operation of the computer, not relatively
long‐lived phonons within the diamond components. As in an ordinary
crystal lattice, it becomesnecessary to consider thenearly continuous spec‐
trum of collective vibrations of these components from very low frequen‐
cies to the highest frequencies relevant on operating timescales. The atoms
are rather lumpy and the lattice somewhat amorphous, so abstracting the
assembly into a solid yields a relatively optimistic treatment.

Regardless of how well the components fit together, the speed of sound
is slower than that within the molecules,31 the intermolecular forces are 31 Consider a linear atomic chain with

components like those in Nanosystems as
(rigid) “atoms”: masses of 10−21 kg, bond
stiffnesses of 40N/m, and (average) lattice
spacing of 5nm; the sound speed is 5nm×√

40 (N/m)/10−21 kg = 1 km/s, less than
1/10 that of bulk diamond.

more nonlinear, and the heat capacity is larger (like that of a polymer, be‐
ing made up of components each with many internal degrees of freedom).
There’s some room for specifics, but it’s hard to make the accounting in
Eqn. 1 come out with less than two orders of magnitude faster dissipation
from phonon‐phonon interactions alone.

That is, even if all other loss mechanisms could be engineered away
without sacrificing all other design degrees of freedom, the energy lost to
thermal structural vibrations through fundamental processes is worse than
the purportedly conservative bounds in Nanosystems.

Molecular relaxation When the logic rodexecutes itsmotion, it is respond‐
ing to changes in the equilibrium position x0(t) ∼ −(1nm) cosπt/tswitch
with respect to the alignment forces. If we move slowly, then the align‐
ment forces do work equal to 1

2mv2max when accelerating the rod, and op‐
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posite work decelerating the rod. The net work done is
∫ tswitch
0

dt F · v =∫ π

0
dϕmv2max sinϕ× cosϕ = 0.
Because of the finite speed of sound in the rod, the center of mass sees

an alignment force with a lag of about τ = ℓrod/vs = 6ps ≈ 2tswitch/33.
That is, in the absence of dissipation and ignoring the smaller stretching
stiffness of the rod, the equation of motion looks something like mẍ =

−k(x(t− τ)− x0(t)). Because the force is slightly out of phase with the dis‐
placement, each switchingmotion does net work of roughly

∫ tswitch
0

dt F ·v =∫ π

0
dϕmv2max sinϕ × cos(ϕ + 2π/33) ≈ 0.6 × 1

2mv2max. If you didn’t need the
design to do anything else, this energy might be recoverable, but practi‐
cally, this excess energy would be thermalized by friction or transmitted
into structural vibrations (which are then thermalized).32 32 The mass of the logic rod and the stiff‐

ness against its displacement imply fun‐
damental frequencies around 70GHz in
isolation, so a linear chain of as few as
100 logic rods connected through sections
of housing will have collective modes ex‐
tending below 1GHz that will be excited
by the drive motion. (Higher frequency
modes will also be excited because the
drive force, being intermittent rather than
purely sinusoidal, has spectral content at
those frequencies, but less so.) Since
the logic rods are by necessity stiffly me‐
chanically coupled, there is no question
of eliminating these modes by “[g]ood de‐
sign practices” as Drexler suggests in the
brief consideration he gives the problem
in §12.3.4h.

More importantly, work done by structural stress is a generic problem
in a system with lag between stress and strain appreciable on operating
timescales. That lag or relaxation time is the basic concept behind the stan‐
dard (Zener) model of viscoelasticity and is equivalent to a stiffness with an
imaginary (dissipative) part.33 Again, the primary issue is not stress and

33 Cleland 2013, Chapter 8. Usually the
Zener model is applied phenomenologi‐
cally, but in this case the relaxation time
has a very literal origin.

strain within a component but rather the stress and strain in the molecu‐
lar solid formed by the components. This alone would set a lower bound
on dissipation around a single‐digit fraction of the stored energy per cy‐
cle at the proposed operating rate. This mechanism is fundamental to any
molecular assembly where themolecules do not behave like perfectly rigid
bodies with respect to structural motion. A fix would involve operating so
slowly or making components so small that the lag really is negligible.34

34 I imagine making interfaces so stiff as
to match the sound speeds of intercompo‐
nent and intracomponent motion within
1% would also work, but even if feasible
it is almost certainly incompatible with
other important design constraints.

Edge friction and superlubricity Nanosystems does not consider friction
due to edges of the contact area, which can dominate at the nanoscale.
For example, one experiment found that inner atoms contributed frictional
force within their experimental uncertainty of 2 × 10−2 fN/atom or 1 kPa,
while edge atoms contributed 0.5–1 pN/atom depending on edge orienta‐
tion relative to motion:35

35 Qu et al. 2020.

In conclusion, performing experiments in superlubric graphite‐
graphite contacts of different area and perimeter, we identified
the contributions of the contact area and edges to the overall
frictional force. We found that, per atom, the contribution of
edge atoms is 4–5 orders ofmagnitude greater than that of inner
atoms. The contact area is virtually frictionless, and for contact
sizes below ∼ 10μm, the total friction is determined mainly by

https://www.wolframalpha.com/input?i=integrate+sin%28x%29*cos%28x+-+2pi%2F33%29+from+0+to+pi
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the edges.

The experimental sliding speeds are much lower (by 7 orders of mag‐
nitude, in a limit where velocity dependence is logarithmic rather than
linear) and the normal force much higher (4 OOM) than in Nanosystems.
Still, for comparison, Drexler calculates a frictional force per unit area of
1 kPa in sleeve bearingswith relative surface speeds of 1m/s (again, roughly
0.02 fN/atom assuming carbon nanotubes). Of course, Drexler is consider‐
ing diamondoid tubes, while the experiment uses graphene‐graphene sur‐
faces, arguably the paradigmatic superlubric system.

Usually, frictional force scales linearly with normal force and sliding
speed; because this is (evidently) not always true at the nanoscale, it’s dif‐
ficult to evaluate a comparison like this. Still, edge atoms in the experi‐
ment contribute four orders of magnitude more friction per atom in abso‐
lute terms than the friction Drexler calculates, in a setting that would ordi‐
narily be three net orders of magnitude more favorable even before con‐
sidering material differences.

Optimistically, as few as 1%of interface atoms inNanosystems’ exemplar
logic systemare edge atoms. Even if sliding frictionof contact area interiors
were computed correctly, it would likely remain an irrelevant contribution
to total friction.

Friction in superlubric systemshas alsobeen studied in simulation. While
I’ve found it’s difficult to tell from the outside howmuch a given simulation
can really be trusted, the dominant contribution of edges is a consistent
result. For example, Tangney, Louie, and Cohen 2004 perform molecular
dynamics (MD) simulation of relative translation of concentric nanotubes,
finding that “[t]he principal source of friction is found to be the ends of the
tubes and hence dynamical friction is virtually independent of the overlap
area between tubes”; Guo et al. 2011; Guo et al. 2012, and Koren and Duerig
2016 are also in agreement.

If we want to consider area contributions in isolation, Cook, Buehler,
and Spakovszky 2013 critically reviews MD studies of area scaling of rota‐
tional friction in double‐walled carbon nanotubes (DWNTs). The authors
attempt to make sense of the finding that “the values for friction reported
in the literature do not agree and show scatter over many orders of magni‐
tude, which makes it difficult to use the data with confidence.” They find
reason to agree with most optimistic results, which yield about 0.5 fN/atom
at a sliding speed of 100m/s. That would imply 0.005 fN/atom at 1m/s, as‐
suming the linear scaling holds down to those speeds. Themost pessimistic

https://www.wolframalpha.com/input?i=%282.7e-14+N%2F%28m%2Fs%29%29+*+%281m%2Fs%29+%2F+%282pi*2nm*2nm%29
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results are about 2.5 orders of magnitude higher; the only experimental re‐
sult at the time estimated static friction at 2 orders of magnitude higher
than the optimistic high‐speed kinetic friction.

This scaled simulation result is in fact lower that Nanosystems’ estimate
for sleeve bearings by a factor of 4. Again, Nanosystems considers diamon‐
doid bearings and interface spacing around 0.2 nm, while DWNTs are basi‐
cally graphene‐graphene interfaceswith spacing around0.35 nm(andbuckle
too easily to be used with the forces in Nanosystems). It’s again difficult
to interpret the comparison, except to say that the sleeve‐bearing results
are well into the superlubricity regime.36 In any case, edge contributions 36 I’m not aware of any other diamond‐

diamond superlubricity results with
any surface termination. It also seems
Nanosystems’ friction calculation gives
much smaller numbers for DWNTs, mak‐
ing it hard to accept its formulas as giving
an “upper bound” on drag (10.4.6f).

should already be sufficient to overdamp logic rod motion.
It may be possible to reduce friction beyond that of known superlubric

systems through design ormaterials choice, but one would expect doing so
to severely limit the design space.

Appendix C.2 Noise and error rates

The logic rod, as far as it loses energy to its environment, is conversely
subject to random noise forces displacing it. This is a statement of the
fluctuation‐dissipation theorem. This is the fundamental relation that con‐
nects drag and Brownianmotion in a fluid, or resistance and Johnson noise
in an electrical circuit. Nanosystems does not seriously consider the effect of
such noise forces on error rates, instead calculating the thermal excitation
of the extensional degree of freedom of a logic rod plus some displacement
into the limit stops at the ends of its range of motion, which is unsurpris‐
ingly irrelevant (a logical error rate of 10−64).37 37 Drexler 1992, §12.3.7, pp. 352–354.

Amore appropriate calculation of error rates would consider the proba‐
bility that thermal forces displace the rodby the threshold distance during a
cycle. Nanosystems notes that such external bombardment occurs, although
the extent of its consideration is a dismissal:38 38Drexler 1992, §5.3.1a, “The irrelevance of

external bombardment”.
At equilibrium, however, an impinging gas molecule is as likely
to absorb energy as to deliver it, and so molecular bombard‐
ment has no net effect on the amplitude of vibration. How a
system is coupled to a thermal bath can affect its detailed dy‐
namics (e.g., the smoothness or irregularity of its trajectory, the
decay time for oscillations of unusual amplitude, etc.), but not
the statistical distribution of dynamical quantities. This princi‐
ple holds true for systems in general, andmakes the study of po‐

https://en.wikipedia.org/wiki/Fluctuation-dissipation_theorem
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sitional uncertainty dependent only on potential energy func‐
tions.

This is another statement of the fluctuation‐dissipation relation for the
particular case where you only care about the variance in slow measure‐
ments of a single mode. It’s correct (interpreted appropriately), but it is
not license to treat a given degree of freedom as coupled only to the de‐
signedmodes of vibration. We very much do care about detailed dynamics
in mechanisms like the nanomechanical computer, with its switching time
of 0.1 ns and a positional degree of freedom participating in a spectrum of
modes at different frequencies.

For some intuition, note that the thermal average (root mean square)
velocity of a massm at temperature T is vthermal =

√
kBT/m. For the logic

rod in the nanomechanical computer, this is 4.6m/s. The RMS velocity of
the exemplar rod during the switching motion is 11m/s.39 This raises the 39 Drexler 1992, Eqn. 12.10, p. 349.
natural question: what prevents a mere 2σ excursion from causing an er‐
ror?40 40 That is, why 10−64 rather than 10−2?

The reply in Nanosystems, as far as it considers the question, is: “In a
typical nanomechanical subsystem, a series of components is mechani‐
cally coupled, moving as a nearly rigid unit with respect to some motion
coordinate q.”41 That is, the logic rod is tightly constrained to its trajec‐ 41 Drexler 1992, §10.8, “Barriers in ex‐

tended systems”.tory by the surrounding mechanism; the net force that accelerates the rod
Faccel ≈ 0.1nN is much smaller than the alignment force Fal ≈ 1nN that
restores its position from excursions on the scale of 0.01 nm.

Specifically, in the exemplar system, a logic rod is confined in its hous‐
ing with a stiffness against displacement of around 40N/m. The logic rod
itself is taken to have a stretching stiffness around 10N/m between the gate
and alignment knobs. The thermal average relative displacement between
probe and gate at room temperature is then roughly 0.023nm. Likewise,
there may be thermal excursions against the 1nN alignment force, chang‐
ing the effective error threshold. This ismoreor lesswhat goes intoDrexler’s
calculation of error probability.42 42 Drexler 1992, §12.3.7b.

In dynamical detail, an error occurs if the displacement of the logic rod
is larger than the error threshold (0.7nm) for the length of time it takes for a
probe rod to pass (on the order of 10ps). In the language of noise andmea‐
surement on finite timescales, we care about position noise in a bandwidth
of around 100GHz. In particular, the average (root mean square) displace‐
ment in that bandwidth should be much less than 0.7 nm. Quantitatively,
if we target 0.023 nm, then in terms of noise power spectral density, the

https://www.wolframalpha.com/input?i=sqrt%28k_B+*+300K+%2F+1.94e-22kg%29
https://www.wolframalpha.com/input?i=pi+*+2nm+%2F+%284+*+sqrt%282%29+*+0.1+ns%29
https://www.wolframalpha.com/input?i=sqrt%28k_B+*+300K+*+%281+%2F+%2840N%2Fm%29+%2B+1+%2F+%2810N%2Fm%29%29%29
https://www.wolframalpha.com/input?i=sqrt%28%282*1.94e-22kg+*+0.7nm%29%2F%281nN%29%29
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requirement is Sxx(ω) = (0.023nm)2/(2 · 100GHz).43 43 Using white noise to be conservative,
and using the two‐sided spectral density
with the 2π convention such that for white
noise with variance σ2 the spectrum is
S(ω) = σ2 (following Clerk et al. 2010).
This discussion will be very informal, but
the point only needs orders of magnitude
to carry.

The complementary picture looks at fluctuations in forces. If environ‐
mental bombardment applies a nN‐scale force for this brief time, then the
rod can be displaced against the alignment force, causing an error. How
often does that happen?

Quantum limits Nanosystems notes a number of times that the systems it
describes are far from quantum limits.44 Above, the purported dissipation

44 E.g., Chapter 5, “Positional Uncer‐
tainty”.

was found to be at the (room temperature) quantum limit for bulk diamond
and well below that for a molecular solid. For some more intuition about
how plausible Nanosystems’ numbers are, let’s consider limits on noise.

According to the fluctuation‐dissipation relation, the (two‐sided) power
spectral density of the noise force at frequenciesω ≪ kBT/h̄, given a damp‐
ing rate γ, is thewhite spectrumSFF (ω) = 2mγkBT . For the sliding friction
of the logic rod calculated inNanosystems Section 12.3.4c, the damping rate
can be calculated from the average velocity and implied frictional force as
γ = 2π × 4MHz, so SFF (ω) ≈ 4× 10−5 fN2

/Hz.
We can compare this to the quantum‐limited force noise due to the un‐

certainty principle, which in this context tells us that SxxSFF ≥ h̄2/4.45 45 Braginsky, Khalili, and Thorne 1992.
Together with the position uncertainty above, the minimum uncertainty
in the alignment force is SFF (ω) ≥ 4 × 10−5 fN2

/Hz. Again, there’s no
physical connectionbetween the two calculations. It’s just coincidental that
the given friction adds force noise equivalent to the minimum force noise
arising from quantum uncertainty. Experiments have, at least, measured
noise this low, although at lower frequencies and in limited bandwidths,
for example in LIGO and other experiments going to great lengths (reach‐
ing ultra‐high vacuum and extreme cryogenic temperatures, engineering
structures to do nothing but block phonon transmission at certain frequen‐
cies, harnessing quantum correlations) to reach those sensitivities, some‐
times just to show that they can (e.g., Mason et al. 2019).46 46 I’m emphasizing this in an attempt to

transmit some perspective on how im‐
plausible that noise level is for a room‐
temperature device with moving parts at
gigahertz frequencies where everything is
in contact with everything else.

It at least remains true that these systems should be orders ofmagnitude
away fromquantum limits. The noise in the restoring force associatedwith
the 0.023 nm thermal displacements is about 40N/m × 0.023nm ≈ 1nN.
The timescale for restoring the position is on the order of 10 ps. The rod
applies an equal and opposite force on the alignment stop. Every compa‐
rable component in the assembly is experiencing similar forces, which are
transmitted throughout the structure because everything is stifflymechani‐
cally coupled. Informally, it shouldn’t surprise us to find noise forcesmuch

https://www.wolframalpha.com/input?i=%28%280.053e-21+J+%2F+1nm%29%2F%281.94e-22+kg+*+11m%2Fs%29%29%2F%282pi%29
https://www.wolframalpha.com/input?i=2*1.94e-22kg+*+k_B+*+300K+*+2pi*4MHz+in+fN%5E2%2FHz
https://www.wolframalpha.com/input?i=%28%28planck+constant+%2F+2%29+%2F+%280.023nm+%2F+sqrt%282*100GHz%29%29%29%5E2+in+fN%5E2%2FHz
https://www.wolframalpha.com/input?i=1%2F%28sqrt%28%2840N%2Fm%29%2F%281.94e-22kg%29%29%2F%282pi%29%29
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larger than 1nN on 10 ps timescales in a realistic model.

Force noise estimate If the numbers inNanosystems are not realistic, then
just how large are fluctuations in force on sub‐nanosecond timescales? We
can at least find a lower bound based on the minimum dissipation we’ve
identified.

Using the friction in Nanosystems and Akhiezer damping in bulk dia‐
mond, the noise from these two broadband sources alone would be

SFF (ω) = 2mkBT

(
2π × 4MHz+

ω2

2π × 3.7× 1013 Hz

)
(2)

σ2
F =

1

2π

∫ 2π×100GHz

−2π×100GHz
dωSFF (ω) (3)

σF ≈ 14pN. (4)

where the variance σ2
F is taken over 10ps averages of the force. This would

plausibly be fine if correct and complete, because it’s small compared to
the alignment force.

If actual damping is a conservative three orders of magnitude larger,
then the average noise force is nearly 0.5nN, overcoming the constant‐
force alignment spring by enough to cause an error in 0.1–1% of cycles.47 47 This is easily consistent with the orig‐

inally calculated positional uncertainty
of 0.023 nm, since 0.5 nN/(40N/m) is still
only half that. That’s not to say much
larger noise forces aren’t possible (even
likely), but rather just that they’re ap‐
proaching an overdamped Brownian mo‐
tion regime that looks somewhat differ‐
ent.

This is already enough tomake nanometer‐precision, GHz‐frequency oper‐
ation of this sort of assembly impractical at room temperature.

It’s important tonote thatmost problems I’ve identified canbeaddressed
by making the device both slower and larger. (Going slower has to include
reducing alignment forces, or else errors canhappen in the same short time
and the noise bandwidth that you’re sensitive to doesn’t go down. But the
noise force amplitude related to viscous damping scales with the square
root of that bandwidth and sobecomes larger relative to the alignment forces.
So you have to make things larger, too.) Going to cryogenic temperatures
also helps with some things, but increases friction, reduces thermal con‐
ductivity, and increases sensitivity to local heating. I suspect a workable
design would not be competitive with field‐effect transistors even in prin‐
ciple, but that’s a hard argument to make airtight. A fix involving scaling
would also be less helpful for the various other assemblies that require sub‐
nanometer precision in itself for chemistry.

The sketch above does not account for the contribution of any resonant
modes involving relative displacement of the logic knobs, which cannot be
eliminated in a stiffly‐coupled assembly of many parts (consider note 32

https://www.wolframalpha.com/input?i=sqrt%282*1.94e-22kg*k_B*300K*%282*pi*4MHz*200GHz+%2B+%282pi%29%5E2*%282%2F3%29*%28100GHz%29%5E3%2F%282*pi*3.7e13Hz%29%29%29
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above). It also ignores the response time of alignment forces, which is com‐
parable to the time required for an erroneous knob passage. Noise added
by mechanical amplification (in particular anywhere signals fan out) is an‐
other critical subject with fundamental consequences left fully open.

Appendix C.3 Errata?

Finally, it’s worth looking more closely at some calculations in Nanosys‐
tems. Drexler uses the physics of dislocations in a crystal lattice as a model
for many calculations of friction between nanoscale parts. The idea is re‐
sourceful given the tools available at the time, but it’s also not clear how ap‐
propriate that model is, and some of his terminology (e.g., “band‐stiffness
scattering”, “band‐flutter scattering”, “shear‐reflection drag”) does not ap‐
pear in the literature before or afterNanosystems. Even once nanotribology
coalesced in the early 1990s as a field systematically studying friction and
interfacial mechanics at the atomic scale, it did not draw on themethods of
Nanosystems or its references.48 One would not have expected these meth‐ 48 Bhushan, Israelachvili, and Landman

1995.ods to be complete or correct, and we have found that they are not.
That said, I believe there are also problems in their application on their

own terms. For example,Nanosystems Section 7.3.5, “Scattering from align‐
ment bands in bearings”, describes calculations for drag between sliding
surfaceswith someanalogy to dislocationphysics. A key result quoted from
a personal communication is a dimensionless phonon transmission coeffi‐
cient, Eqn. 7.40:

Ttrans =
4

3

∫ 1

0
k3

ek/T ′−1

∫ π/2

0
sin 2θ

(d′k cos θ)2+4dθ dk∫ 1

0
k3

ek/T ′−1
dk

, (5)

where T ′ = T/TD and d′ = (6π2nV )
1/3M/ka are dimensionless parame‐

ters, T is the temperature, TD is the Debye temperature of the medium, nV

is the number density of atoms in the medium,M is the elastic modulus of
the medium, and ka is the stiffness per unit area of the interface. Friction,
as calculated in Nanosystems, scales with Ttrans.

This is followed by the approximation (Eqns. 7.41 and 7.42), correspond‐
ing to the dotted lines in Figure 1:

Ttrans ≈
z

1 + 3z
; z = 0.6d−1.7

n (1 + 0.075T ′−1.8) (6)

Ttrans ≈ z, z ≪ 1 (7)

where dn = n
1/3
V M/ka = d′ × (6π2)−1/3.49 49 I’m assuming that the −1/3 in the

book’s definition dn = n
−1/3
V M/ka is

a typographical error, since dn needs to
be dimensionless. Similarly the Debye
wavenumber is (6π2nV )

1/3 rather than the
(6πnV )

1/3 of the book’s Eqn. 7.29, since
that’s the standard definition and it pro‐
duces the matching figure.
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By the logic sketched in the text, the sin 2θ in the numerator of Equa‐
tion 5 should instead be sin θ (from integrating in spherical coordinates).
The equation as written implies an extra factor of 2 cos θ with no justifica‐
tion and contradicts the comment on the next page that grazing‐incidence
(θ = π/2) phonons make a large contribution to Ttrans. Unfortunately, the
reference is to personal communications with J. Soreff (1991) and there is
no relevant published work by the same author. Changing sin 2θ to sin θ

increases Ttrans (and consequent drag power) by a factor of 10 to 100 for the
sets of parameters used in the text. In Figure 1 we reproduce Fig. 7.6 in
Nanosystems with the formula as written, alongside a comparison with the
sin θ version.

Appendix C.4 Meditation

I didn’t keep track, but I likely spent on the order of 100 hours reading and
digestingNanosystems and related texts,50 identifying problems in the anal‐ 50 These include Freitas 1999; Freitas 2003;

Phoenix, Moriarty, and Jones 2004–2005;
Jones 2004–; leplen 2013; Beckstead 2015;
Marblestone 2021; Snodin 2022; bhauth
2023, and GiveWell’s non‐verbatim sum‐
maries of conversations with Adam Mar‐
blestone, Chris Phoenix, Eric Drexler, and
Philip Moriarty.

ysis, estimating corrections, and choosing parts of all that to work into a
critique of in‐principle feasibility spelled out in a way thatmight be persua‐
sive to non‐experts. This EA Forum comment outlinesmy thoughts early in
this process, including intuitive bullet versions of some of my arguments
above, among others. Somewhat later, I expanded on some particulars,
alluding to back‐of‐the‐envelope calculations along the same lines. This fi‐
nal product is narrow in scope and considers a handful of dissipation and
noise mechanisms applied to about 11 pages in Chapter 12 of Nanosystems,
but the chosen claims—considerations that apply to the systems described
throughout the book—are argued quantitatively in some detail.

If I’d only cared about persuading myself, I would have stopped much
sooner. I did, in fact. I spent a weekend or two with Nanosystems as a stu‐
dent and set it downwith veryhigh confidence that its nanomechanical pro‐
posals were unworkable and high confidence that nothing in that ballpark
was workable in principle. The discussion above just sharpens a couple of
the basic intuitions and physical arguments about nanomechanics I had re‐
lied on as a student without having thoroughly checked them—and without
having identified particular errors in Nanosystems. At that point, from my
perspective as a researcher, there was no benefit to further engagement on
the subject. It would not result in anything more publishable than a blog
post or yield anything like a research program.

I suspect nearly all scientists who engage with Nanosystems stop there,
since the level of public discussion is generally around the level of my early

https://files.givewell.org/files/conversations/Adam%20Marblestone%208-27-14%20(public).pdf
https://files.givewell.org/files/conversations/Adam%20Marblestone%208-27-14%20(public).pdf
https://files.givewell.org/files/conversations/Chris%20Phoenix%2008-20-14%20(public).pdf
https://files.givewell.org/files/conversations/Eric%20Drexler%201-23-2015%20(public).pdf
https://files.givewell.org/files/conversations/Philip%20Moriarty%2009-03-2014%20(public).pdf
https://forum.effectivealtruism.org/posts/oqBJk2Ae3RBegtFfn/my-thoughts-on-nanotechnology-strategy-research-as-an-ea?commentId=WQn4nEH24oFuY7pZy
https://muireall.space/nanosystems/
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Figure 1: Phonon transmission coefficient at a com‐
pliant interface Ttrans. Friction, as calculated in
Nanosystems, scales linearly with Ttrans. Top: Iden‐
tical to Fig. 7.6 in Nanosystems, produced using our
own implementation of its equations. Solid lines use
Equation 5, dotted lines use the approximation Equa‐
tion 6. Bottom: The same plot, but (from my under‐
standing) corrected, meaning that the solid lines use
sin θ in the spherical integral rather than sin 2θ. The
Debye temperature for diamondused byNanosystems
gives T ′ = 0.13, and key exemplars in Nanosystems
have log10 dn ranging roughly between 2 and 3.
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intuitions and arguments—closer to blog posts than to problem sets. Even
that level of public engagement is seen as somewhat embarrassing, with
Smalley as the obvious case.

So detailed critiques are absent from the published literature, but pre‐
dictably so. It’s time‐consuming to review even a small facet of a text that
jumps so breezily from one problem to another, and there’s little to gain.
There’s even risk of backfiring—myanecdotal impression is that lower‐effort
critiques have historically hadmixed reception among non‐experts, result‐
ing in claims that Nanosystems provides a detailed blueprint that has sur‐
vived review, or that the best that critics can do is engage with a strawman,
describe mere engineering constraints, or regulate social status.

Having now followed through somewhat on my early intuitions, I also
have more confidence in the objections others have raised on the subjects
further from my expertise. I expect many intuitive critiques would carry
with generality if elaborated, while others identify practical difficulties that
considered together produce unsatisfiable engineering constraints.51 51 For example, this goes for the class of

“common intuitive objections” I list at the
beginning here and for those bhauth gives
here. Not every one applies to every pos‐
sible nanosystem, but that’s not necessary
to form confident beliefs based on diverse
particulars with wide total coverage.

I worry that I’ve done some injustice in taking everything but simple
nanomechanics as given, suggesting that anything I don’t mention or use
without objection is correct, or by treating the proposed systems with se‐
riousness out of proportion to the work put in by Nanosystems itself. Simi‐
larly, I don’t want to give the impression that I speak for the scientific com‐
munity, or that this is the best this angle of criticism has to offer. I’ve un‐
doubtedly missed things—some favorable to my arguments, some not. I
don’t have any special claim to authority, and there’s nothing novel here.
I’m just a person whose scientific background is tangential to some topics
in Nanosystems.

I’ve tried to write this appendix in a measured way, avoiding going be‐
yond claims that I directly support in the text. Still, I should state clearly
that the calculations above are a modest contributor to my own high con‐
fidence that claims in Nanosystems and its subsequent tradition should not
particularly factor into how we think about existential risk or the future of
computing. Frommy perspective, the argument that a particular system is
unworkable is foremost evidence that the level of analysis in Nanosystems
is not nearly sufficient to inform “lower bounds” on possible or plausible
technological capabilities. This appendix has described, even in a quanti‐
tative sense, the least of the book’s problems. They are just the simplest and
most general considerations I’ve identified that can (I hope) be communi‐
cated forcefully while relying minimally on implicit expert knowledge.

https://muireall.space/nanosystems/
https://bhauth.com/blog/biology/nanobots.html
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Appendix D Predictions

While I forecast as a hobby, I’m generally disinclined to give probabilities
when no decision hinges on them. In this case, because the essay body
attempts to avoid weighing evidence while suggesting places to look for ev‐
idence, it seems important to provide some context on my own views for
the sake of transparency.

1. In 10 years, I judge that the weight of evidence is against similarity to
Scenario 1: 50%

2. In 10 years, I judge that the weight of evidence is against similarity to
Scenario 2: 5%

3. An open‐source model competitive with GPT‐4 is available by the end
of 2024: 60%

4. GPT‐4 is obsolete by 2028: 80%

5. OpenAI revenues exceed expenses by 2028: 40%

6. Leading‐edgeAIhardwareoperatingprinciples arediscontinuouswith
field‐effect transistors (e.g., optical computing, spins, magnons, plas‐
mons, flux quanta, nanomechanics)...

(a) ... by 2043: 1%

(b) ... by 2070: 5%

7. Leading‐edge AI hardware incorporates some “beyond‐CMOS” tech‐
nologies like the above integrated with traditional CMOS designs...

(a) ... by 2043: 30%

(b) ... by 2070: 80%

8. Amajor change in transistor structure, comparable to the change from
planar to fin FETs, goes from initial invention to leading‐edge process
nodes in under 1 year...

(a) ... by 2043: ≪1%

(b) ... by 2070: <1%

9. Amajor change in transistor structure, comparable to the change from
planar to fin FETs, goes from initial invention to leading‐edge process
nodes in under 5 years...



REFERENCES 31

(a) ... by 2043: 1%

(b) ... by 2070: 5%

10. The next major change in AI architecture, comparable to the change
from RNNs to transformers, goes from initial invention to leading‐
edge models in under...

(a) 1 year: 5%

(b) 5 years: 50%

11. Nanomechanical computerswith theoperating characteristics described
in Nanosystems are feasible in principle: <1%

12. Nanomechanical computers are competitivewith leading‐edge transistor‐
based computers by 2070: ≪1%

13. Apeerwith similar backgroundagrees that I accurately describe generic
obstacles to competitive nanomechanical computation as described
in Nanosystems: 95%

14. EricDrexler agrees that I accurately describe generic obstacles to com‐
petitive nanomechanical computation as described in Nanosystems:
10%

15. Eric Drexler agrees that friction calculations in Nanosystems are not
accurate upper bounds: 40%
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